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Page 4, paragraph 2: The fifth sentence should be changed to read as

follows:

The model differs from a true-~scale model In that no inlet flow or

Page 16, second line of table I:

Jet was simulated, no pitot-head extension exists, the thickness
of the wing-tip alrfoil section 1s 10 percent instead of 12 per-
cent and the aft end of the fuselage, or model base, is enlarged
0.3l inches in diameter (25 percent of original diameter) to
provide clearance sbout the available sting support.

NACA-Langley - 5-16-32 - 213

Change "NACA 63;-012" to "NACA 63;-010."
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RESEARCH MEMORANDUM

HIGH~SPEED WIND-TUNNEL INVESTIGATION OF THE LONGLTUDINAL

STABILITY AND CONTROL CHARACTERISTICS OF A Jé»SCALE
- 1

MODEL OF THE D-558-2 RESEARCH ATRPLANE AT
HIGH SUBSONIC MACH NUMBERS AND
AT A MACH NUMBER OF 1.2

By Robert S. Osborme

SUMMARY

Presented in this report are the resulis of 1lift, drag, and pltching-

1

momsnt measurements made on & —=-scale model of the Douglas ﬁ—558—2 high—~

- 16

speed research airplane. The model was tested at various angles of attack
through a subsonic Mach number rangs from 0.6 to 0.95 and at the supersonic
Mach number of 1.2. The data have been corrected for the interference
effect of the sting support on the model and, therefore, represent the

model in the power—off condition.

A small 1ift force break occurs at a Mach number of approximately 0.9.
The drag rise at an angle of attack of 0° occurs at a Mach number of
approximately 0.86, with the drag coefficlent at a Mach numbsr of 1.2

being slightly higher than at 0.95.

The additlion of chordwise fences to the upper wing surfaces has
little effect on the force and momsnt characteristics of the model at the

Mech numbers and angles of attack tested.

Static longlitudinal stability is indlcated for the model at all 1lift
coefficients and Mach numbers tested. The rate of change of pitching—
moment coefficient wlth 1ift coefficilent at constant Mach number for the

- complete model is 0.2 at subcritical speeds, and between -the Mach numbers
of 0.85 and 0.95 the value increases' in magnitude to ~0.4%., Tt is indicated
that this 1s due to wlng—fuselage characteristics and a decrease in the

- rate of change of effective downwash angle wlth lift coefficient.

degree of stabllity at a Mach number of l 2 is approximately egual to

that at a Mach number of 0.95.
L)

Ll



2 e SR © CONTEDENEENE NACA RM No. L9COk-

Horizontal stabillizer and elevator effectivensss is satisfactory at
all Mach numbers tested, although a rapld decrease evident in the Mach
number range from 0.9 to 0,95 indicates that substantial losses in
horizontal stablllzer effectiveness and serlous losses or reversal of
elevator effectiveness occur 1n the untested Mach number range between 0.95
and 1.2. With increasling speed, rapld changes in elevator setting required
for trimmed level flight sppear necessary in the Mach number range
from 0.9 to 1.2, while variations in horizontel stabllizer setting
required are small and gradual through the Mach mumber range tested.

INTRODUCTION

The D-558-2 1is a research airpldne designed to investigate asrodynamic
bPhenomena at low supersonic Mach numbers. It has a sweptback wing located
vertically in a midposition on the fuselage and = sweptback horizontal
and vertical tail. It 1s powered by a turbojet engine and a rocket engine
which produce approximately 7500 pounds of thrust.

A I%-scale model of-the D-558-2 was tested in the Langley 8-foot high—
gpeed tunnel at high subsonic Mach numbers and at & Mach number of 1.2.
Force and moment characteristics for several conflgurstions at various
angles of attack were measured by an intermal straln—gage balance system.
The resulte, corrected for the interference effect of the sting support
on the model (representing the model in a power—off condition), are
pregented herein, The effects of two different sets of chordwise fences
on the force and moment characterlstics of the model at high speeds were
also investigated.

SYMBOLS
v free—stream velocity, feet per second
P free—stream density, slugs per cublc foot

q dynamic pressure, pounds per square foot (E% pv%)

a velocity of sound, feet per second

M free—gtream Mach number (g)
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1ift, pounds
drag, pounds

pitching moment about center of gravity, inch-pounds
(20.2 percent c) :

wing area, square feet

wing mean serodynamic chord, inches

1ift coefficient (-1
aS,,

drag coefficlent (JE— ‘
Sy

pitching—moment coefficient ( M)
aS,C
angle of attack of fuselage center line, degrees

angle of lncidence of the horilzontal stebllizer with respect to
fuselage center line, degrees

elevator angle with respect to horizontal stablllzer chord line
measured In plane perpendicular to hinge llne, degrees

effective downwash angle, degrees

area of sting support at model base, square inches
¢
aresa of model base, square lnches
gstatic pressure at the model base, pounds per square foot

free—stream statlc pressure, pounds per square foot
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APPARATUS AND METHODS

Tunnel

The tests were conducted in the Langley 8—foot high—speed tunnel,
which 1s of the closed—throst single—return type. A plaster liner was
instelled in the tunnel at the minimum section, extending upstream to
form the subsonic test sectlion and downstream to form the supersonic test
gection. The Mach number was uniform in the subsonic test section and
varied only by a maximum of 0,02 from the design Mach number of 1.2 in
the supersonlc test section.

Model

The all-metal i%nscale_model of the D-558-2 was constructed by the

NACA. It hes a hollow fuselage to accommodate the internal strain—gage
balance system. Figure 1 provides a geunosral view of the model mounted in
the suporsonic test spction. Figure 2 1s a three—wview drawling of the
model, and table I lists 1ts dlimensions. The model differs from a true-—
scale model in that no iInlet flow or jet was simulated, no pitot—head
extenslon exlsts, and the aft end of the fuselage, or model base, 1s
enlarged 0.3l inches in diemeter (25 percent of original diameter) to
provide clearance gbout the availlsble stlng support. ’

Two different sets of chordwlse fences were tested., They are
designated in this report by the ratic of thelr lengths to the length of
the wing chord in the planse of the fences. The 0.68¢c fences were designed
by the Douglas Alrcraft Company as a component pert of the complete air—"

plane, although they have been treated as a separate configuration in these

tegts. The 0.95¢c fences were constructed from a design In reference l.
Both sets of fences were located in the spanwlse positlons specified for
the 0.68c fences. The over—all dimensions and location of the fences on
the wing are shown 1n figure 3, and table IX lists the ordlnates of the
fences and the airfoll sectlion in the plane of the fences.

Mcdel Support System

The model was attached to a straln—gage balance which was enclosed
within the hollow fuselage. The downstream end of the balance formed a
tapered sting that was attached to a telescoping support tube through
couplings used to very the angle of attack. The support tube was fixed
axially in the center of the tunnel by two sets of support struts
projecting from the tunnel walls. I

Cad

e
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The model was located in either the subsonlc or supersonic test
sections by extending or retracting the sliding portlion of the telescoping
support tube. Guy wires located 21 inches downstream of the model base and
swopt back to the tunnel walls were used to steady the support system in
the subsonic test section. Figure L4 shows the model support system and
model locations in the subsonic and supersonic test sectionms.

Test Conditions .

The tests were run at angles of attack of —2°, 0°, 2°, and 4° through
a Mach number range from 0.6 to 0.95 with the model in the subsonic test
section, and at a Mach number of 1.2 in the supersonic test sectlion. The
Reynolds number based on a modsl mean asrodynamic chord of 5.46 inches
ranged from 1.55 X 106 at a Mach number of 0.6 to 1.80 X 106 at a Mach
number of 0.95. The Reynolds number was 1.73 X 106 at a Mach number
of 1.2.

During the subsonic runs tunnel—rall pressures were observed to insure
that data were not obtalned with the tummel choked. Observations of static
pressures along the upper and lower surfaces of the sting support, tunnel—
wall pressures, and shadowgraph ilmages showed that in all supersonic runs
the normal shock was at least 6 inches downstream of the trailing edges
of the horizontal tail. The local Mach numbers along the upper and lower
surfaces of the sting support at various dlstances downstream of the
model base are presented for representetive configurations in flgures 5
and 6.  Tunnel—wall pressures indicated that in ths supersonic runs the
gshock disturbance from the nose of the model was transmltted to the wall
at a dlstance of approximately 26 inches downstream of the nose. This
precluded the posslbllity of the reflected disturbance acting on the
model. '

Measurements

Lift, drag, and pltching-momsnt measurements were made by means
of an internal strain-gage balance system. The pitching moment was
measured about the center of gravity of the airplans with wheels retracted
(20.2 percent of the wing mean serodynamic chord). The following
configurations were tested: '
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(a) Fuselage and fin
(b) Fuselage, fin, and wing

(c) Complete model with:
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1y = 1.97, 8, = 6°
1, = 1.9%, 5, = 4°
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1y = 1.99, 8y = —4°

1.9°, 8, = =6°

[N
<+
]

(d) Complete model, 1t = 1.9%, 8y = 0° with:
0.68¢c fences

0.95c fences

Corrections

Due to the flexlbility of the sting support system and the large
aerodynamic loads on the modsl, the angle of attack varied with Mach
number during a run. The change in angle at each test point was calculated
from the movement on a ground glass of the reflectlon of a fixed point
source of light from a small mirror attached to the fuselage of -the model.
With these data the results presented herein have been corrected to
constant angles of attack, '
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No accurate expressions are avallable for evaluating the effects of
model and wake constriction on Mach number and dynamic pressure for
sweptback wings at high subsonlic Mach numbers, and therefore no such
corrections have been applied to these data. However, the use of
expressions avallable for straight-wing configuretions indlicates that
the corrections are only between 1 and 2 percent at a Mach number of 0.85
and are much less than 1 percent at e Mach number of 0.9. The corrections
should be less for the sweptback configuration. The correction to angle
of attack due to boundary—induced upwash was found from reference 2 to
be negligible and, therefore, has not been applied Lo these data.

Because the balance system was an intermal one, no forces on the
sting support were measured, and the only tare was the interference effect
of the sting support on thé model. This tare was evaluated by testing the
same configuration on each of four sting supports, each wlth a successlively.
smaller dismeter at the model base, and extrapolating the data to & sting— "~
support diamster of zero, which is assumed to represent the model without
sting-support interference. The sting supports are shown in flgure T.
The diameters of the four sting supports at the model-base locatlon
were 1.4k, 1.16, 0.84, and 0.67 inches. The l.L4h~inch sting support was
used for testing all the conflgurations through the Mach number and angle—
of—attack ranges in ordser to obtaln the uncorrected data. The fuselage
and fin, the fuselage, fin, and wing, and the complete model with two
horizontal stabillzer and two elevator settings were tested through the
Mach number range on thes smaller supports. Because of strength limitations,
the latter tests, with the ‘exception of the fuselage and fin conflguration,
were made at an angle of attack of —£° only and because of dangerous
oscillatory tendencles, tests using the 0.67-inch sting support could not
be continued above a Mach number of 0.8. However, sufficlent data were
obtained to result in good approximations of the tare values. The force
and moment coefficients obtained with the various sized sting supports
were plotted agalinst the ratlio of the sting—support area at the model
base to the area of the model base. Curves falred through the data
points were extrapolated to the ratlo representing a sting-support dlameter
of zero. An example of thls procedure for one configuration at several
representative Mach numbers 1s presented in figure 8(a). The difference
between the value of the coefficient for the 1.lh~inch sting support and
a sting-support dlameter of zero is the tare. Tare values for the
different tall settings tested were interpolated and extrapolated to
obtain values for all tall settlngs. The tares were assumed to be constant
through the amall angle—of—attack range of these tests. All configurations'
had drag tares, while only those with the horizontal tail had pitching-
moment tares. None of the configurations had 11Tt tarss. All data used
for analysls in this paper have been corrected for tares and, therefore,
represent the model 1n a power—off condition with no Jet or sting support
present.
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Model base pressures were obtained for all configurations by means

of a static—pressure orifice in the lower surface of the 1l.44—inch sting
support-located 3/h inch upstream of the model base inside the fuselage.
Base preasures were obtained for the configurations tested on the smaller
sting supporte in a similar manner, With the smaller sting supports, the
base pressures have been corrected for the interference effect of the

sting support 1n the manner previously described for the force and moment
data. An example for one configuration at several representative Mach
numbers is shown in figure 8(b). The variastions of the ratio of model
bage pressure to free—atream statlic pressure with Mach number are presented
in figure 9. These values rerresent the model wlth power of'f-and no sting
support present and mey be used to reduce the corrected drag data of — -
figure 10 to free—stream static—pressure conditlons at the model base,
This correction has not been applied in this paper.

RESULTS AND DISCUBSIGN

An index of the figures presenting the results is glven as follows:

Figure
Force and moment characteristica:
Cr, Cp, and €, plotted against M for —

Fuselage and fIn . v« o ¢ ¢ o ¢ ¢ o o o & &
Fuselage, fin, and wing . . . « . « « « .
Wing 8l0NE « o o« o o « s o o o « o o o o o .« o« . 10(c)
Complete model with varying 1y . . . . . « . 10(d) to 10(f)

Complete model with varylng &g =+ « « « « « « . . 10(g) to 10(1)

Complete model with femces . . . . . o o ¢ o . . 10(m) to 10(n)
C; requlred for level flight—plotted against M . . . . . . . 11

Lift—curve glope plotted agalngt M for -— . .
COmPlote MOAOL o o« o o o « o o « o o o o ¢« o ¢ o« s o o o« « o 12(8)
Wing alone . . . . . s =16 )

Cp, plotted against CD for -

Complete MOABL . ¢ & o ¢ « « « o ¢ a o ¢« ¢« o & s o o o o o 13

e e« e s o« o . 10(a)"
. e 14))

L3 L] L 3 L

Wing alone . « « ¢ « .+ . e e e e e e e e e e e e e e . 1h
Lift—dreg ratio plotted against CL for — .

Complete MOAEL v & ¢ o o o ¢ « o ¢ o o s o o o s o s o s o o 15

Wing alone . ... . B T T T T 16
Effect of fences on CL, Cp, and Cp plotted against M for —

0-6& fences - - L L] L] . - - - - - - L L] L L] L . L L] L . . . 17

0.95C FONCEB v « o o o o o « o« « o o« o o s o o o o s s s o s 18

A
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Fi
Longltudinal stability: gure
Cm prlotted against C; for — )
varying it L] L] * . . L] . L] L] . . . L ] L] L] - [ ] . L2 L] . * L] L] 19
Varylng Sy o o o o o o o o oo o o o o o o o o o o o s o en 20
= plotted against M for -—
Cr,

‘ Complete MOABL « o« o o ¢ o o « o « o o o ¢ o o o « o « « o 21(a)
Fuselage, fin, and WinNg « « «v « o « o o « o« o o o o « « « « 21(b)

Control:
Control effectiveness plotted against M for —
StabIlIZOTe o« & o o o o ¢ ¢ o s o« o s o s o s s 0 e e o o . 22(a)
ELoVAtOr . v 4 o o o o ¢ o o « o o o o o s o o s o o o « o 22(b)
Control deflections plotted against M for — :
StabIliZOT + & ¢ o ¢ « o ¢ o o o o o o o o e e e o o o o . 23(n)
BlovatOr .« + o o« o o o o« s o o o s e o o s o o o o o « « o 23(b)

Downwashs
€ plotted against CL s e s e s s s s e s e e e e e e e oh
€ Pplotted agaInst M . . ¢ & v ¢ ¢ ¢ ¢« s a e e o o s e e e o 25 __
a—e— Plottﬁd. a@-inst M 8 & e 8 o e & ® & & ®© 8 © e & o » = . 26
oCy, :

Because of the lack of sufficlent data no attempt is made in this
report to interpolate data between the Mach numbers of 0.95 and 1.2
‘, although trends may be indicated.

Force and Moment Cheracteristics

Force and moment data corrected and uncorrected for tares are presented -
in figure 10. Uncorrected values are Iincluded to Indicate the magnitude of
the tares for the various configuratlions and taill settings. The wing-alone
data are the difference between fuselage, fin, and wing, and fuselage and

s fin corrected data, and, therefore, include wing-fuselage linterferencs.

At an angle of attack of O°, a small 1ift force break occurs for all
complete model conflguratlions at a Mach number of approximately 0.9. The
angle of attack for zero 1ift 1s essentlally constant through the subsonic
Mach number range but increases slightly at a Mach number of 1.2. The
variation of pltching-moment coefficient with Mach number 1s small up to
a Mach number of 0.85, after which large changes occur with small increases
in Mach number up to a Mach number of 1.2.
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A drag force break occurs for the fuselage and fin configuration
between the Mach numbers of 0.925 and 0.95. For the complete-model
conflgurations at an angle of attack of 0° a drag force break 1is
indicated at a Mach number of approximately 0.86, with the drag coef—
ficient at a Mach number of 1.2 being slightly larger than at 0.95.

In figure 11 1s presented the variatlion of 1lift coefflcient required
for level flight with Mach number for sea-level and 35,000—Ccot altitudes
for the D-558—2 airplane with a wing loading of 65 pounds per square foot.
This loading represents the airplane with approximately 60 percent of
its fuel expended. Based on a drag coefficient of 0.08, the total drag
of the airplane in level flight at 35,000 feet and at a Mach number of 1.2
would be approximately 7000 pounds. The thrust available i1g 7500 pounds,”
which indicates that flight at a Mach number of 1.2 at high altitudes 1s
posslible. However, it may be that the drag coefflclent between the Mach
numbers of. . 0.95 and 1.2 18 higher than the value at 1.2 and that the
critical condition 1s in thls reglon.

The slope of the 1lift curve at a glven Mach mumber was essentially
constant through the gmall angle-—of=attack range of these tegts. For the

complete model (fig. 12(a)) the value of EEL increases from 0.07 at =a
a

Mach number of 0.6 to its maximum value of 0.09 at a Mach number of 0.9.
At a Mach number of 0.95 it has decreased slightly to 0.085 with & further
small reduction to 0.075 being Indicated at a Mach number of-1.2. The
wing-elone configuration (fig. 12(b)) shows a similar small variation of
slope of the 1ift curve with Mach number. From the variations of 1lift
coeffilclent wlth drag coefficlent for the complete model and wing-elone
configurations (figs. 13 and 14), the variations of lift—drag ratio with
lift-coefficlent were obtained (figs. 15 and 16). The maximum complete |,
model lift-—drag ratlo occurs at a 1lift coefficlemnt of 0.35, at a Mach
number of 0.85, and is approximately 12. At the 1lift coefficient required
for level flight at 35,000 feet at a Mach number of 1.2, the complete
model lift—drag ratio is 1.6. The values of. the lift-drag ratio for the
wing-alone configuration are higher due to the exclusion of the drag of
the fuselage and fin.

The effects of adding the 0.68c and 0.95¢c fences to the complete
model are shown in figures 17 and 18. The incremental 1lift and drag
coefficients are negligible throughout the Mach pumber and angle—of— .
attack rangss tested. "The Ilncremental pitching-moment coefficlents are
also negligible except at_angles of attack of 0° and —2° at-high
subsonic Mach numbers, where increments approach a value of 0.01. Thils
value 1s amall, and 1t 1s, therefore, concluded that—the addition of the
fences hae 1little effect on the force and moment characteristics of-the
model at the Mach numbers and angles of attack tested.

wr?

»,
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Comparison of the results of these tests at a Mach number of 0.6 has
been made with the results of tests on a %-scale model of the D-558-2 at

a Mach number of approximately 0.2 with a Reynolds number of approxi-—

mately 2 X 10° (reference 3). Lift-curve slope agreement is excellent,
while variations of 1ift coefficlent with drag coefficient indicate that

values of the drag coefficlent for the %_sca.le modsl are approxi—
mately 0.008 higher at 1ift coefficients below O.k.

Longitudinal Stability “

The variations of pitching-moment coefficient with 1lift coefficient
for various horizontal stabllizer settings (fig. 19) indicate that the
complete—model configuration is longlitudinally stable at all 1ift coef-—
ficients and Mach numbers for all horizontal stabilizer angles tested.
The fuselage, fin, and wing configuration shows a stabilizing tendency at
all 1ift coefficients at Mach numbers of 0.85 ani above. The complete
model with various elevator angles (fig. 20) is also longitudinally
stable at all 1ift coefficlients and Mach numbers tested. The veriation

oC
of the static-longltudinal-stability parameter -z with Mach number

oC
L
for level—flight trim conditions at two altitudes for the complete-—model
oc
configuration is presented in figure 21(a). The value of —= 1is approxi—
X,
mately —0.2 at low Mach numbers and, above a Mach number of 0.85, increases
in magnitude until it reaches & value of approximately —O.4 at a Mach number
of 0.95. The value is approximately —0.42 at a Mach number of 1.2. In
figure 21(b) is presented the variation of the static—longitudinal—
oC
stabllity parameter _m wlth Mach number for level fllght at two altitudes
oCr,
for the fuselage, fin, and wing configuration. It is evident that the
aerodynamic center of the tallless configuration moves rearward of the
center—of—gravity position at a Mach number of approximately 0.85 s, with
the rearward movement contlinuing up to a Mach number of 0.95. This
indicates that the increase in stability above a Mach number of 0.85
evlident wlth the complete-model configuration is due in part to wing
fuselage characteristics which in turn are dues to a rearward center—of—
pressure movemsnt on the sweptback wing. The degree of stabllity at a
Mach number of 0.6 agrees closely with the values obtalned from low—

gpeed tests of a i—-sca‘.le model. (See reference 3.)
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Control

Horizontal-stabillzer effectiveness (fig. 22(a)) increases steadily
up to a Mach number of 0.9, after which there 1s an sbrupt 25—percent
decrease up to a Mach number of 0.95. The effectiveness at a Mach number
of 1.2 is equal to that at 0.95. It is indicated that.a substantial loss
of effectiveness occurs between these Mach numbers. Elevator effectiveness
(£1ig. 22(b)), especlally for the sea—level condition, also decreases :
rapidly between the Mach numbers of 0.9 and 0.95, with a further decrease
being indicated at a Mach number of 1.2. It is indicated that serious
loss or reverssl of effectlveness may occur between the Mach numbers
of 0.95 and 1.2,

In figures 23(a) and 23(b) are presented the variations of horizontal
stablllzer and elevator angles required with Mach number for level—flight
trim conditlons at two altitudes for the complete model., The varlation
in horizontal stebllizer angle required is only 20 through the Mach numbeér-
range tested, and no rapid changes with Mach mumber are indicated. A
change 1n elevator angle of approximately 8 1is required. For the sea—
level case, rapld changes with Mach number occur after a Mach number
of 0.9 is reached; whereas, at 35,000 feet, 1t 1s evident that rapld
changes with Mach number must occur between the Mach numbers of 0.5
and 1.2. The variations of horizontal stebillizer and elevator angle
required with Mach number for trlmmed level flight at sea level are stable,
whereas those at 35,000 feet are both stable and unstable, depending on the
Mach number range considered. The preceding dats indicate that the critical
Mach number range with regard to control is between the Mach numbers of 0.9
and 1.2, the greater part of which is not covered by this investigation.

Very good agreement is indicated between the values of horizontal—
stabilizer effectliveness for these tests at a Mach number of 0.6 and the

values from the low—sapeed tests of the %-scalernwdsl (reference 3).

Downwash

The horizontal—tail airfoil section being symmetrical, the effective
downwash angles may be found -where the pltching-moment Ilncrement due to
the teil AC, 1s zero. Under these conditions 1t 1s assumed that the

flow 1s lined up with the chord line of the tall and it becomes necessary
only to find the angle between free—stream dirsction and the chord line

of the tail. The drag of the taill 1s neglected. The effective downwash
angle was determined by adding the angle of attack where ACm = (0 to the

horizontal teil angle. Additional values of effective downwash angles
were found by using data where AC,, did not equal zero. In these cases

«r .
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the values of additional horlzontal stabllizer angle needed to bring AC

oC
to zero were calculated using the applicable values of —=2, The results
3y
of these calculations are presented in figure 24 as the variation of
effectlve downwash angle with 1ift coefficilent:.

The variatlon of effective downwash angle with Mach number for level
flight at two altitudes 1s presented in flgure 25. The values decrease
with increase in Mach number up to a Mach number of 0.9, after which they
increase rapldly up to a Mach number of 0.95. At a Mach number of 1.2
the values are slightly higher than at 0.95. In figure 26 are presented
the varlations with Mach number of the rate of change of effectlive down—
wash angle wlth 1ift coefficient for level flight at two altitudes. The
abrupt decrease 1n %Ci- at a Mach number of 0.85 is an additional

L . '
contributing factor to the increase in static longlitudinsl stabillity of

the model at that Mach number. The value of gci Increases between the
L
Mach numbers of 0.95 and 1.2, wlth the occurrence of rapld changes with
Increasing Mach number belng ilndicated. Although this is a destablllzing
effect, there 1s no indicatlon that 1t has reduced the stability of the
model between these Mach numbers. Other effects apparently counteract the
effect of the increase In gci The tall has greoater sweepback than the
L

wing and, therefore, would be expected to have suffered a smaller loss in
value of the lift—curve slope at Mach numbers above 0.95. This effect is
stabllizing and may be the reason that the high degree of stability is

maintained at a Mach number of 1.2, although the value of %—- has

L
increased.

Comparison at & Mach number of 0.6 with the low—speed data from the

T];--scale model tests (reference 3) indicates excellent agreemsnt between

the respective values of Bi

Xy,
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CONCLUSIONS

The followlng conclusions may be drawn friom tests of a f%—scale model

of the D-558-2 in a simulated power—off condition at Mach numbers fram 0.6
to 0.95 and at a Mach number of 1.2:

l. A small 1ift force break occursoat & Mech number of approxi-— -
mately 0.9. At an angle of attack of 0 the drag rise occurs at a Mach
number of approximately 0.86. The airplans appears to have enough thrust
available to fly at a Mach number of 1.2, at an altitude of 35,000 feet
although the renge between the Mach numbers of 0.35 and 1.2 may be the
critical one in this respect. )

2. It 1s indicated that the model is longitudinally stable at all
1ift coeffilclents and Mach numbers tested. The rate of change of pltching-
moment coefficient with 11ft coefficlent at constant Mach number for the
complete model 1s ~0.2 at subcritical Mach numbers, and between the Mach
number of 0.85 and 0.95, the value increases in magnitude to -O.4 because
of wlng—fuselage characteristics and a decrease in the rate of change of
effective downwash angle with 1lift coefficient. The degree of stability .
at & Mach number of 1.2 is approximately equal to that of 0.95,.

3. Control effectiveness les satisfactory at the Mach numbers tested,
although a rapld decrease 1s evident In the Mach number range from 0.9 .
to 0.95. This indicates the possibllity of substantial losses of horizontal— "
stabilizer effectiveness and serious losges or reversal of elevator
effectiveness occurring In the untested Mach number range between 0.95
and 1.2.

4, Changes in horizontal stabilizer setting required for trimmed
level flight through the Mach number range are small and occur gradually.
Changes in elevator deflection required are small and gradual up to a
Mach number of approximately 0.9, after which it is indicated that rapid
increases are necessery up to & Mach number of-1.2.

5. The addition of chordwise fences to the upper wing surfaces has
little effect on the force and moment characteristics of the model.

Langley Aeronautical ILaboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va.
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TABLE T

DIMENSIONS OF THE f%’SCALE MODEL. OF THE D—558-2

10 -

Wing root section (normal to 30-percent normal chord line) NACA 63,-0L0 .
Wing tip gectlon (normal to 30-percent normal chord line). .NACA 63;: '

WINg aref, 80 ££ « o o « o « o o o ¢ o « e o o v o o ¢ o o s « « ~0,6847
WINZ SPAN, e ¢ o « o o o o o o o o o o o« o 8 o o o o o « o « « 18,72
Wing mean sercdynamic chord, iN. o « &+ ¢ o o ¢ o o o o o « o o & 5.46
Location of center of gravity, percent of M\AuCu ¢ & + ¢ « « & & 20.2
Wing root chord, in. (parallel to plane of symmetry) e e e e e 6.78
Wing tip chord, in. (parallel to plane of symme try) . . . . . . 3.83
Wing taper retio . . € e o o s et e e e e e e e s e e e e 0.55
Wing aspect ratlo . . . . . . « ¢ e e 6 s & s e e o o o o 3.57
Wing sweep angle, deg (30—percent normal chord line) e e e e e 35
Wing incidence, deg .« « o ¢ « « o« o o o o o 5 o s 6 8 « o o o 3
Wing dihedral, 84868 + «_ ¢ « « o« s o ¢ o » « & « e o .« . . -3

Wing geometric twilst, deg . ¢ + ¢ ¢« . 0 < . . . .
Tail root section (normal +to 30-percent normal chord line) .NACA 631—010

Tall tip sectlon (normal to 30—percent normal chord line) -NACA 63I~010 .

Tall area, 8@ £6 « o« « « o« o o o o o s o o o o o o o o o o o . 0.156
Tail oPan, IN. o 4 o ¢ o o o o o o = « s s o o o o o o o '8.98
Tall moan asrodynamic chord in. . . . . e e e 2.61
Tail root chord, in. (parallel to plane “of symmetry) e e e o o« 3.35
Tail tip chord, in. (parallel to plane of symmetry) . . . . . . 1.68
Tall 58POr YABEI0 ¢ v o o o = o ¢ « & s o s o s o o o o o o » 0.5%
Tail aspect ratio , . ... . e 6 e e 8 s e o e .o o e 3.59
Tall sweep angle, deg (30—percent normal chord line) . .-. . . . 40
Tall dlhedral, doZ « « ¢ o « « = o s ¢ o e o« o o o =« o« o s o o « o
Elevator area, percent Of £8ll Area8 . « « « « o » . . .. 25
. Puselage length, in. . . . e e s o o s o o o s o « o . . 31.5
Fuselage maximum dlameter, 1n. « e e 4 4 e e e 4 e e e s e e e 3.75
Fuselage fineness ratio . . . . . . e e e e . . . 8.40
Fuselage base dismeter of model used in Langley 8—foot higb— ]
speed tunnel, 1N. « ¢ ¢ ¢« « + o & . e v e e e s . e . 1.56
Tall helght, wing root chords above the root chord extended

measured at the elevator hinge lines . . . e e e e . 0.54—
Tail length, in,, méasured between the 1/ M. A. c. "locations on -
the wing and tsil in horizontal and vertlcal planes parallel
to the fuselage CONLEr 1IN6 « « « « o o o o o o o o o « » « » 14,62
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TABLE IT

ORDINATES MEASURED FROM THE LEADING EDGE OF THE AIRFOIL

SECTION IN THE PLANE OF THE FENCES, OF THE AIRFOIL

SECTION, 0.68c FENCE, AND 0.95c FENCE FOR

THE —
1

«SCALE MODEL OF THE D-558-p

Ell dimenslons are in 1nche;_‘

Airfoil section 0.68c fence 0.95¢c fence
x y x ha x y »,
0 0.33h4 0.128 0.310 0.120
.33k .128 .955 .585 .180 450
.955 .207 1.672 .Thé <955 518
1.672 .29 2.259 .66 1.672 .560
2.259 .259 3.073 .687 2.259 .570
3.073 .219 4.155 .125 3.073 .530
L.155 .125 4.155 436
5.590 .. 5.410 .320
54590 0
S NAGA

7
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Figure 1.~ The fg—scale model of the D-558-2 mounted in the supersonic test sectlon of the
Langley 8—foot high-speed tunnel.
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Figure 2.— Drawing of* the %—scale model of the D-558—2 as tested in the

Langley 8—foot high—speed tumnel. (All dimensions are in inches.)
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Top view
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Figure 3.— Locatlon and dimenslons in inches of tences tested on the
%— scale model of the D-558-2 in the ILangley 8~foot high—speed

tunnel. ORI
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Figure %.— Location of the ilg—scale model of the D-558-2 in ths Langley 8-foot high-sipeed tunmel.
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Figure 5.— Mach number distribution along upper and lower surfaces of
1.4h—3inch sting support at various stream Mach numbers. Complete
model with 0.68c fences; iy = 1.99; &y = 0%; a = 9.
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Figure 6.— Mach number distribution along upper and lower surfaces
of 1l.4b4~inch sting support for_ various angles of attack at-a
gtream Mach number of 1.2,
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Figure 6.— Concluded.
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Figure 7.— Strain—gage balances and sting supports used In testing the D558 modal- in the
. Iangley 8-foot high-speed tumnnel,
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